Какое освещение осуществляется электрическими лампами?

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ

ЭЛЕКТРИЧЕСКОЕ ОСВЕЩЕНИЕ, преобразование электроэнергии в свет в целях создания гигиенически благоприятных, комфортных и безопасных условий для зрительного восприятия.

ВНУТРЕННЕЕ ОСВЕЩЕНИЕ

На изложенных общих принципах должно базироваться освещение любого внутреннего помещения. Однако в таких общественных помещениях, как магазины и театры, где не ставятся крайне ответственные задачи зрительной работы и где воздействие на воображение и привлекательность более приоритетны, чем комфортность и эффективность зрительного восприятия, качество освещения имеет менее важное значение. Оно весьма существенно там, где приходится иметь дело с очень ответственными задачами зрительной работы, – в операционных, учреждениях, механических цехах, школьных классах, студенческих аудиториях.

В качестве источников света для внутреннего освещения применяются в основном лампы накаливания и газоразрядные лампы (люминесцентные, ртутные и др.). Большинство учреждений, школ и общественных зданий освещается люминесцентными лампами или лампами накаливания, тогда как во многих производственных помещениях, особенно с высокими потолками, используются ртутные, а также люминесцентные лампы. Но во всех случаях источники света должны быть закрыты экранами, исключающими прямую блескость, а там, где это возможно, – и отраженную. В одном из конструктивных вариантов светильник с минимальной прямой и отраженной блескостью посылает почти весь свой выходной световой поток вверх, на потолок, который выполняет роль вторичного источника большой площади с малой яркостью.

Еще один важный способ повышения качества внутреннего освещения – применение матового отделочного покрытия с высокой отражающей способностью для потолка, стен, пола и мебели. Это превращает потолок, стены, пол и мебель во вторичные источники света большой площади, благодаря чему не только повышается коэффициент использования света в помещении, но и увеличивается доля рассеянного света, а также устраняются резкие тени.

Исследования условий оптимального освещения помещений, требующих комфортности, привели к следующим выводам: потолки лучше всего делать белыми с высоким коэффициентом отражения, порядка 85%; коэффициент отражения стен должен составлять 40–60% (при этом возможен широкий спектр приятных оттенков); коэффициент отражения мебели должен составлять около 35%, пола – не менее 20%. Эти требования подразумевают, в частности, что на окнах должны быть предусмотрены неяркие занавеси, задергиваемые в темное время суток, а поверхность стола должна иметь достаточно высокий коэффициент отражения, чтобы по яркости она не контрастировала с белой бумагой. Высокие коэффициенты отражения способствуют созданию идеальных условий для зрительной работы.

НАРУЖНОЕ ОСВЕЩЕНИЕ

Изложенные выше общие принципы относятся и к наружному освещению. Рекомендуемое количество света здесь обычно меньше, так как задачи зрительной работы менее ответственны и высокий уровень освещенности экономически неоправдан. Качество освещения тоже менее существенно, особенно при очень низких уровнях освещенности, но прямая блескость должна устраняться или сводиться к минимуму.

Освещение дорог.

Главная цель освещения дорог – обеспечение хорошей видимости в ночное время, необходимой для безопасного и удобного движения пешеходов и транспорта.

При проектировании дорог обычно учитываются такие факторы, как интенсивность движения, рельеф, статистика дорожно-транспортных происшествий, типы транспортных средств, ожидаемые скорости движения, правила парковки, строительные характеристики (размеры, материалы) и наличие особых участков – пересечений, развязок, мостов, путепроводов, подъездных путей. Источниками света на улицах городов и автомагистралях служат в основном газоразрядные лампы.

Заливающий свет.

Заливающий свет, создаваемый лампами (накаливания и газоразрядными) с рефлекторами, применяется для наружного освещения зданий, а также для освещения стадионов, автомобильных стоянок и других открытых многолюдных зон. В широких масштабах такое освещение впервые было применено на Панамерикано-Тихоокеанской международной выставке в Сан-Франциско в 1915, где полная затрачиваемая на это мощность составляла около 8 МВт. С появлением более совершенных источников света стало возможно освещение заливающим светом многих видов спортивных сооружений – для игры в бейсбол, футбол, теннис.

ЭЛЕКТРИЧЕСКИЕ ИСТОЧНИКИ СВЕТА

Существуют два основных вида электрических источников света – лампы накаливания и газоразрядные лампы. Среди газоразрядных ламп особое место занимают люминесцентные.

ЛАМПЫ НАКАЛИВАНИЯ

В лампах накаливания свет испускает металлическая проволочка (нить), раскаленная добела проходящим по ней током.

Устройство лампы.

Типичная бытовая лампа накаливания (общего назначения) состоит из следующих частей (рис. 1): нити накала в виде спирали из вольфрамовой проволочки, стеклянного баллона (который откачивается и заполняется инертным газом) и цоколя, который является объединяющей и силовой деталью лампы и имеет контакты для подключения нити накала к электропитанию. Все эти три элемента конструкции могут быть разного размера и различной формы в зависимости от назначения – лампа общего назначения, с внутренним отражателем, витринная, для уличного освещения, для автомобильных фар, для карманного фонаря, фотографическая лампа-вспышка. В бытовых лампах с тремя режимами накаливания имеются две нити накала, которые можно включать по отдельности и вместе, получая разную яркость. Средний срок службы большинства бытовых ламп при номинальном напряжении составляет 750–1000 ч.

Достоинства и недостатки.

Достоинства лампы накаливания таковы: низкая начальная стоимость лампы и необходимого для нее оборудования, компактность, благодаря которой она хорошо подходит для регулирования светового потока, надежная работа при низких температурах и довольно высокий при ее размерах световой выход. К недостаткам же, способным при некоторых обстоятельствах перевесить достоинства, относятся низкий световой КПД, высокая рабочая температура и заметные колебания светового выхода при изменениях напряжения питания.

ГАЗОРАЗРЯДНЫЕ ЛАМПЫ

В газоразрядных лампах электроэнергия преобразуется в свет при прохождении электрического тока через газ или пары металла. Цвет светового излучения зависит от рода газа, его давления и от вида люминофора, нанесенного на внутренние стенки стеклянного баллона лампы. Газоразрядные лампы наполняются инертными газами (неоном, аргоном, криптоном или ксеноном), а также парами ртути или натрия.

Ртутные лампы.

Ртутные лампы типа применяемых в промышленности состоят из следующих частей (рис. 2): кварцевой трубки дугового разряда, наполненной аргоном и парами ртути; наружной стеклянной колбы (с внутренним люминофорным покрытием), окружающей трубку дугового разряда, закрывающей ее от воздействия потоков окружающего воздуха и предотвращающей окисление; цоколя, на котором держится вся лампа и имеются электрические контакты для подвода напряжения питания. Размеры и форма этих конструктивных элементов могут быть разными в зависимости от типа лампы – общего назначения (с прозрачной колбой, с люминесцентным покрытием, с исправленной цветностью, рефлекторная, полурефлекторная лампы), ультрафиолетовые, солнечного света и фотохимические лампы. Средний срок службы ртутных ламп общего назначения составляет 6000–12 000 ч.

После того как ртутная лампа включена и в ней установился дуговой разряд, ток разряда через пары ртути сам по себе непрерывно нарастает. Поэтому его приходится ограничивать внешним балластным устройством.

Достоинства и недостатки.

Ртутные лампы отличаются высоким световым КПД (в 2–3 раза большим, чем у ламп накаливания общего назначения), большим сроком службы и компактностью, благодаря чему они хорошо подходят для регулирования светового потока. Их недостатки – высокая стоимость лампы и вспомогательного оборудования, синевато-зеленый оттенок свечения и медленный повторный пуск. Цветность ртутной лампы исправляется применением внутреннего люминофорного покрытия.

Люминесцентные лампы.

Люминесцентные лампы состоят из следующих основных деталей (рис. 3): стеклянного баллона, двух цоколей (с выводными контактами) на обоих концах баллона и двух подогревных катодов (электронных эмиттеров) из вольфрамовой нити или стальной трубки. Баллон наполнен парами ртути и инертным газом (аргоном); на внутренние стенки баллона нанесено люминофорное покрытие, преобразующее ультрафиолетовое излучение газового разряда в видимый свет. Конструкция лампы, представленная на рис. 3, типична для самых распространенных 40-Вт ламп.

Лампа действует следующим образом. Электрод на одном из концов лампы испускает электроны, которые с большой скоростью летят вдоль лампы, пока не произойдет столкновение со встретившимся атомом ртути. При этом они выбивают электроны атома на более высокую орбиту. Когда выбитый электрон возвращается на прежнюю орбиту, атом испускает ультрафиолетовое излучение. Последнее, проходя через люминофор, преобразуется в видимый свет.

Типы ламп.

Люминесцентные лампы делятся на две группы соответственно типу электродов: с подогревными катодами и с холодными катодами. В лампах с подогревными катодами, которые рассчитываются на большие токи (1–2 А), как правило, используются спиральные активированные вольфрамовые нити накала. В лампах же с холодными катодами предусматриваются цилиндрические электроды с покрытием из эмиттерных материалов, и они рассчитываются на меньшие токи. Средний срок службы ламп с подогревными катодами зависит от наработки на один пуск: 7500 ч при 3 ч наработки на один пуск и более 18 000 ч в непрерывном режиме. Для ламп же с холодными катодами срок службы не зависит от числа пусков и достигает 25 000 ч.

Лампы с подогревными катодами по способу их пуска делятся на лампы с предварительным прогревом, быстрого и моментального пуска. Как и все другие газоразрядные приборы, лампы с подогревными катодами нельзя присоединять к источнику питания без балластного устройства, ограничивающего ток (рис. 4). Лампы с предварительным прогревом нуждаются также в стартере; при пуске такой лампы замыкается стартер, и катоды, соединенные последовательно, подключаются к сети питания, так что по ним проходит ток. После того как катоды разогреются настолько, что могут эмиттировать электроны, стартер автоматически размыкается, и лампа загорается. В благоприятных условиях весь пуск занимает несколько секунд. В лампах быстрого пуска катоды нагреваются постоянно, а разряд возникает при повышении напряжения. Стартеры не требуются, и время пуска значительно меньше, чем у ламп с предварительным прогревом. В лампах моментального пуска не требуется ни прогрева катодов, ни стартера. Просто на катод подается повышенное напряжение, которое вызывает эмиссию электронов и зажигание разряда в лампе.

Достоинства и недостатки.

К достоинствам люминесцентных ламп относятся высокая световая отдача (до 77 лм/Вт) и большая долговечность. Недостатки – высокая начальная стоимость лампы и светильника, шум дросселя стартера и мерцание. Хотя перечень недостатков обширнее, достоинства столь велики, что уже к 1952 лампы накаливания в США были вытеснены люминесцентными лампами в качестве основного электрического источника света.

Электролюминесцентные лампы.

В отличие от люминесцентных ламп (в которых свет испускается при возбуждении люминофора ультрафиолетовым излучением газового разряда), в электролюминесцентных лампах, изобретенных в 1936, электроэнергия преобразуется непосредственно в свет благодаря применению специальных люминофоров. Лампа представляет собой многослойную конструкцию из слоя люминофора (цинк-сульфидного, активированного медью или свинцом) и двух электропроводящих пластин, одна из которых прозрачна. Устройство электролюминесцентных ламп двух типов показано на рис. 5. Цвет свечения лампы (синий, зеленый, желтый или розовый) зависит от частоты напряжения питания, а яркость – от частоты и напряжения. Электролюминесцентные лампы пока что не отличаются большой световой отдачей. См. также ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ.

Епанешников М.М. Электрическое освещение. М., 1973
Кнорринг Г.М. и др. Справочная книга для проектирования электрического освещения. Л., 1976
Лозовский Л.И. Проектирование электрического освещения. Минск, 1976
Кунгс Я.А., Фаермарк М.А. Экономия электрической энергии в осветительных установках. М., 1984

Правила технической эксплуатации электроустановок потребителей

Раздел 2. Электрооборудование и электроустановки общего назначения

Глава 2.12. Электрическое освещение

2.12.1. Требования Правил, изложенные в настоящей главе, распространяются на устройства электрического освещения Потребителей, помещений и сооружений, жилых и общественных зданий, открытых пространств и улиц, а также на рекламное освещение. ¶

2.12.2. Рабочее и аварийное освещение во всех помещениях, на рабочих местах, открытых пространствах и улицах должно обеспечивать освещенность в соответствии с установленными требованиями. ¶

Рекламное освещение, снабженное устройствами программного управления, должно удовлетворять также требованиям действующих норм на допустимые индустриальные радиопомехи. ¶

Применяемые при эксплуатации электроустановок светильники рабочего и аварийного освещения должны быть только заводского изготовления и соответствовать требованиям государственных стандартов и технических условий. ¶

2.12.3. Светильники аварийного освещения должны отличаться от светильников рабочего освещения знаками или окраской. ¶

Светоограждение дымовых труб и других высоких сооружений должно соответствовать установленным правилам. ¶

Читайте также  Как подтянуть пластиковые окна чтобы не дуло?

2.12.4. Питание светильников аварийного и рабочего освещения должно осуществляться от независимых источников. При отключении рабочего освещения переключение на аварийное должно происходить автоматически или вручную, согласно проектным решениям, исходя из целесообразности по местным условиям и в соответствии с требованиями правил устройства электроустановок. ¶

Питание сети аварийного освещения по схемам, отличным от проектных, не допускается. ¶

Присоединение к сети аварийного освещения переносных трансформаторов и других видов нагрузок, не относящихся к этому освещению, не допускается. ¶

Сеть аварийного освещения должна быть выполнена без штепсельных розеток. ¶

2.12.5. На лицевой стороне щитов и сборок сети освещения должны быть надписи (маркировка) с указанием наименования (щита или сборки), номера, соответствующего диспетчерскому наименованию. С внутренней стороны (например, на дверцах) должны быть однолинейная схема, надписи с указанием значения тока плавкой вставки на предохранителях или номинального тока автоматических выключателей и наименование электроприемников* соответственно через них получающих питание. Автоматические выключатели должны обеспечивать селективность отключения потребителей, получающих от них питание. ¶

Использование сетей освещения для подключения каких-либо переносных или передвижных электроприемников не допускается.¶

* Наименование электроприемников (в частности, светильников) должно быть изложено так, чтобы работники, включающие или отключающие единично расположенные или групповые светильники, смогли бы безошибочно производить эти действия

2.12.6. Для питания переносных (ручных) электрических светильников в помещениях с повышенной опасностью и в особо опасных помещениях должно применяться напряжение не выше 50 В, а при работах в особо неблагоприятных условиях и в наружных установках — не выше 12 В. ¶

Вилки приборов на напряжение 12-50 В не должны входить в розетки с более высоким номинальным напряжением. В помещениях, в которых используется напряжение двух и более номиналов, на всех штепсельных розетках должны быть надписи с указанием номинального напряжения. ¶

Использование автотрансформаторов для питания светильников сети 12-50 В не разрешается. ¶

Применение для переносного освещения люминесцентных ламп, не укрепленных на жестких опорах, не допускается. ¶

2.12.7. Установка в светильники сети рабочего и аварийного освещения ламп, мощность или цветность излучения которых не соответствует проектной, а также снятие рассеивателей, экранирующих и защитных решеток светильников не допускается. ¶

2.12.8. Питание сетей внутреннего, наружного, а также охранного освещения Потребителей, сооружений, жилых и общественных зданий, открытых пространств и улиц, как правило, должно быть предусмотрено по отдельным линиям. ¶

Управление сетью наружного освещения, кроме сети освещения удаленных объектов, а также управление сетью охранного освещения должно, как правило, осуществляться централизованно из помещения щита управления энергохозяйством данного Потребителя или иного специального помещения. ¶

2.12.9. Сеть освещения должна получать питание от источников (стабилизаторов или отдельных трансформаторов), обеспечивающих возможность поддержания напряжения в необходимых пределах. ¶

Напряжение на лампах должно быть не выше номинального значения. Понижение напряжения у наиболее удаленных ламп сети внутреннего рабочего освещения, а также прожекторных установок должно быть не более 5% номинального напряжения; у наиболее удаленных ламп сети наружного и аварийного освещения и в сети напряжением 12-50 В — не более 10%. ¶

2.12.10. В коридорах электрических подстанций и распределительных устройств, имеющих два выхода, и в проходных туннелях освещение должно быть выполнено с двусторонним управлением. ¶

2.12.11. У оперативного персонала, обслуживающего сети электрического освещения, должны быть схемы этой сети, запас калиброванных вставок, соответствующих светильников и ламп всех напряжений данной сети освещения. ¶

Оперативный и оперативно-ремонтный персонал Потребителя или объекта даже при наличии аварийного освещения должен быть снабжен переносными электрическими фонарями с автономным питанием. ¶

2.12.12. Очистка светильников, осмотр и ремонт сети электрического освещения должен выполнять по графику (плану ППР) квалифицированный персонал. ¶

Периодичность работ по очистке светильников и проверке технического состояния осветительных установок Потребителя (наличие и целость стекол, решеток и сеток, исправность уплотнений светильников специального назначения и т.п.) должна быть установлена ответственным за электрохозяйство Потребителя с учетом местных условий. На участках, подверженных усиленному загрязнению, очистка светильников должна выполняться по особому графику. ¶

2.12.13. Смена перегоревших ламп может производиться групповым или индивидуальным способом, который устанавливается конкретно для каждого Потребителя в зависимости от доступности ламп и мощности осветительной установки. При групповом способе сроки очередной чистки арматуры должны быть приурочены к срокам групповой замены ламп. ¶

2.12.14. При высоте подвеса светильников до 5 м допускается их обслуживание с приставных лестниц и стремянок. В случае расположения светильников на большей высоте разрешается их обслуживание с мостовых кранов, стационарных мостиков и передвижных устройств при соблюдении мер безопасности, установленных правилами безопасности при эксплуатации электроустановок и местными инструкциями. ¶

2.12.15. Вышедшие из строя люминесцентные лампы, лампы типа ДРЛ и другие источники, содержащие ртуть, должны храниться в специальном помещении. Их необходимо периодически вывозить для уничтожения и дезактивации в отведенные для этого места. ¶

2.12.16. Осмотр и проверка сети освещения должны проводиться в следующие сроки: ¶

  • проверка исправности аварийного освещения при отключении рабочего освещения — 2 раза в год;
  • измерение освещенности внутри помещений (в т.ч. участков, отдельных рабочих мест, проходов и т.д.) — при вводе сети в эксплуатацию в соответствии с нормами освещенности, а также при изменении функционального назначения помещения.

2.12.17. Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3). ¶

2.12.18. Техническое обслуживание и ремонт установок наружного (уличного) и рекламного освещения должен выполнять подготовленный электротехнический персонал. ¶

Потребители, не имеющие такого персонала, могут передать функции технического обслуживания и ремонта этих установок специализированным организациям. ¶

Периодичность планово-предупредительных ремонтов газосветных установок сети рекламного освещения устанавливается в зависимости от их категории (месторасположения, системы технического обслуживания и т.п.) и утверждается ответственным за электрохозяйство Потребителя. ¶

2.12.19. Включение и отключение установок наружного (уличного) и рекламного освещения, как правило, должно осуществляться автоматически в соответствии с графиком, составленным с учетом времени года, особенностей местных условий и утвержденным местными органами власти. ¶

2.12.20. Обо всех неисправностях в работе установок рекламного освещения и повреждениях (мигание, частичные разряды и т.п.) оперативный или оперативно-ремонтный персонал Потребителя обязан немедленно сообщить об этом своим руководящим работникам и принять меры к их устранению. Работа установок рекламного освещения при видимых повреждениях не допускается. ¶

2.12.21. При централизованной автоматической системе управления установками уличного и рекламного освещения должно обеспечиваться круглосуточное дежурство персонала, имеющего в своем распоряжении транспортные средства и телефонную связь. ¶

Мир вокруг нас: все про электрические лампочки

Задумывались ли вы, как мало мы уделяем внимания простым повседневным вещам, окружающим нас? Вот, например, обычные лампочки — какие они бывают, чем отличаются, для чего нужны? Я решил обратиться с этим вопросом к признанному эксперту в области освещения — компании Philips, и они помогли мне с подготовкой этого материала. Хотите знать все про освещение? Добро пожаловать под кат!

Для начала — какие бывают лампы?

Лампы накаливания

При включении лампы накаливания нить из вольфрамовой проволоки раскаляется (2600 — 3000ºС) проходящим через нее током, и она начинает светиться. Однако только малая часть потребляемой электрической энергии лампа накаливания преобразует в излучение в видимой области спектра, большая часть теряется в виде инфракрасного излучения.

  • Невысокая стоимость
  • Привычный желтый свет
  • Отсутствие мерцания

Минусы:

  • Срок службы – 1000 часов (примерно 1 год, но фактически лампа служит меньше, часто перегорает)
  • Тепловое излучение
  • Высокое потребление энергии

Галогенные лампы

Галогенная лампа представляет собой лампу накаливания с колбой, заполненной газом. Такое устройство позволяет нити накаливания гореть ярче. Нанесение галогена, в частности брома, на внутреннюю часть колбы позволяет избежать уменьшения прозрачности стекла в течение срока службы.

  • экономия до 30% энергии
  • стабильный свет высокой яркости
  • улучшенная цветопередача
  • отсутствие ультрафиолетового излучения

Минусы:

  • сильное тепловое излучение
  • чувствительны к скачкам напряжения
  • Срок службы – 2000 – 3000 часов

«Энергосберегающие» (компактные люминесцентные) лампы

В этих лампах поток заряженных частиц проходит по колбе, заполненной парами ртути, в результате чего образуется ультрафиолетовое излучение. Покрытие из люминофора на внутренней поверхности лампы превращает данное излучение в видимый свет.

  • экономия до 80% энергии
  • незначительное тепловыделение
  • широкий диапазон цветности светового излучения
  • срок службы – от 6 до 15 тысяч часов
  • равномерность распределения света

Минусы:

  • необходима утилизация, т.к содержат ртуть и фосфор (меньше 5 мг), они классифицируются как отходы первой (высшей) категории опасности и требуют утилизации в заводских условиях. Для сравнения: в домашнем градуснике содержится 3 000 – 5 000 мг ртути.
  • ИК и УФ излучения
  • фаза разогрева (до 1 минуты), но Philips производит лампы, которым достаточно нескольких секунд, чтобы загореться в полную силу, такие лампы имеют логотип Quick Start.
  • сравнительно высокая цена
  • уменьшение срока службы из-за скачков электричества
  • нестабильная работа при температуре воздуха меньше 0°C

Светодиодные лампы

Светодиодные лампы являются высокотехнологичным решением на основе полупроводниковых кристаллов. Вместо использования нити накаливания или газа в светодиодных лампах свет создается в результате прохождения потока заряженных частиц через полупроводниковый кристалл.

Все светодиоды осветительного типа имеют одинаковую базовую конструкцию. Они включают в себя полупроводниковый чип (или кристалл), подложку, на которую устанавливается кристалл, контакты для подключения энергии, соединительные проводники для подсоединения контактов к кристаллу, теплоотвод, линзу и корпус. В некоторых светодиодах, например, в светодиодах TFFC, разработанных Philips Lumileds, соединительные проводники не требуются.

Плюсы:

  • срок службы – 25 тысяч часов
  • энергосбережение – 80%
  • мгновенно дает яркий свет
  • отсутствие ИК и УФ излучений
  • отсутствие теплового излучения
  • качество и яркость светового потока не меняется с течением времени

Минусы:

  • Относительно высокая стоимость лампы (299 рублей за светодиодную лампу Philips, аналог лампы накаливания 60 Вт)

Цоколи

Цоколи бывают разными по типу и конструкции. Понять, какой из них какой поможет маркировка.

  • E – резьбовой цоколь (Эдисона)
  • G – штырьковый цоколь

Число в обозначении цоколя указывает диаметр соединительной части или расстояние между штырьками.

Строчные буквы в конце показывают количество контактных пластин, штырьков или гибких соединений (только для некоторых типов):

  • s – один контакт
  • d – два контакта

Иногда к первой букве добавляется еще одна уточняющая буква U, обозначающая энергосберегающую лампу.

Светодиодные лампы для домашнего освещения имеют стандартные цоколи, которые подходят к большинству применяемых в быту патронов.

Резьбовой цоколь Е (Эдисона)

Цоколь Е10 – это самый маленький из резьбовых цоколей. Могут применяться в елочных гирляндах или в карманных фонариках.

Цоколь Е14 – так называемые миньоны, чаще всего используются в небольших светильниках, бра и люстрах. Современные светодиодные лампы также изготавливаются в таком цоколе, ими можно заменить любую стандартную лампу накаливания, это позволит существенно экономить электроэнергию. Лампочки под такой патрон отличает большое разнообразие типов: грушевидная, свечеобразная, каплевидная, шарообразная, зеркальная и другие.

Цоколь Е27 – осветительные приборы с таким цоколем наиболее распространены, они подходят под стандартные патроны, которые установлены в каждом помещении. Светодиодные лампы с таким цоколем максимально напоминают стандартные и привычные нам лампы накаливания, они подойдут к любому светильнику с аналогичным патроном.

Штырьковые цоколи

Цоколь GU10 – имеет утолщения на концах контактов для поворотного соединения с патроном. Такой вид цоколя имеют стандартные потолочные светильники.

Цоколь GU5,3 – наиболее часто встречается в галогеновых лампах накаливания MR16. Такой цоколь для акцентного освещения, в мебельных светильниках, в подвесных и натяжных потолках. Светодиодные лампы с таким цоколем представлены достаточно широкой линейкой, поэтому они смогут полноценно заменить галогенные лампы.

Читайте также  Скрипят петли межкомнатных дверей

Параметры лампочек

В первую очередь лампа характеризуется величиной потребляемой мощности (ватт). Лампы накаливания – привычные 40-60 Вт. Мощность светодиодных ламп для бытовых целей лежит в пределах от 1 до 15 Вт. Важно понимать, что потребляемая мощность характеризует только «скорость» расходования электроэнергии из сети, а не световой поток, который определяет, насколько ярко светит лампа.

Световой поток измеряется в люменах и наиболее полно характеризует источник света с точки зрения его способности осветить помещение.

Ещё один важный параметр — коэффициент цветопередачи, который характеризует правильность восприятия цвета предметов при освещении лампой. Коэффициент цветопередачи должен быть указан на упаковке лампы и для светодиодных источников, предназначенных для внутреннего освещения, должен быть 80 Ra.

Не менее важный показатель — срок службы. Рекомендуется использовать лампы известных и проверенных производителей, иначе срок службы рискует не соответствовать заявленному.

Лампочки и здоровье

Современные компании ведут множество разработок, изучая то, как освещение влияет на здоровье и самочувствие людей. В ходе этих исследований создаются новые решения. Производители — члены Европейской светотехнической ассоциации (European Lighting Association), в том числе и Philips, производят светодиодные лампы, соблюдая самые строгие законодательные требования (а в Евросоюзе они очень жесткие).

Согласно стандарту международной электротехнической комиссии (МЭК) 62471, источники света подразделяются на четыре группы риска. Солнечный свет попадает во 2 или 3 группу (самые высокие показатели риска для зрения). В то же время светодиодные лампы для домашнего освещения, как и другие искусственные источники света (лампы накаливания, галогенные и компактные люминесцентные), имеют самый низкий показатель риска – 0 или 1. Поэтому, когда вы длительное время находитесь на улице — лучше всегда пользоваться солнцезащитными очками.

Наиболее вредна для нашего зрения синяя часть спектра. Людям, которые входят в группу риска (слишком чувствительные к этой части спектра), стоит использовать в повседневной жизни светодиодные или компактные люминесцентные лампы с низкой цветовой температурой. Также рекомендуется отдавать предпочтение светильникам с абажурами.

Будущее освещения

Светодиоды – одно из наиболее перспективных направлений развития технологий освещения: благодаря уникальным характеристикам возможности их применения светодиодов практически безграничны.

Учитывая стремительное развитие технического прогресса, сейчас сложно представить, каким будет домашнее освещение, например, через сто лет. Если предположить, что современные тенденции найдут отражение в квартирах будущего, то освещение будет энергоэффективным, динамичным, а также будет максимально использовать и дополнять естественный свет. Благодаря LED- и OLED-технологиям (органические светодиоды) источниками света смогут служить любые поверхности: мебель, стены, пол, одежда. Например, световые обои Philips уже доступны, они создают ощущение, что светится вся стена, причем ее световые режимы могут меняться. Так, утром они могут светить приятным белым светом, а вечером удивлять игрой оттенков. OLED-пластины смогут заменить оконные стекла, которые в светлое время суток будут пропускать дневной свет и служить прозрачным стеклом, а ночью тончайшие панели будут имитировать закат, рассвет или солнечное утро.

Электрическое освещение. Нормирование, выбор, качество, расположение и установка светильников.

Основную часть информации человек получает через органы зрения, и носителем этой информации является излучение, называемое светом. Благодаря действию светового излучения человек может не только воспринимать зрительные образы предметов, но и видеть окружающий его мир во всем разнообразии красок.

Современное общество немыслимо без повсеместного использования искусственного света. Осветительные установки создают необходимые условия освещения, которые обеспечивают зрительное восприятие (видение), дающее около 90% информации, получаемой человеком из окружающего мира. Без современных средств освещения невозможна работа ни одного предприятия. Особенно важную роль свет играет для работников шахт, рудников, предприятий, имеющих здания без окон, метрополитена, многих взрывои пожароопасных производств. Без искусственного света не может обойтись ни один современный город, невозможно строительство, а также работа транспорта в темное время суток.

Эффективное использование света с помощью достижений современной светотехники — важнейший резерв повышения производительности труда и качества продукции, снижения травматизма и сохранения здоровья людей. Главной задачей современной светотехники является создание комфортной световой среды для труда и отдыха человека, а также эффективное применение оптического излучения в технологических процессах при рациональном использовании электрической энергии.

Свет является разновидностью электромагнитной энергии. Видимый свет представляет собой разновидность электромагнитных колебаний с длиной волны от 380 до 760 нм. Энергия, передаваемая лучеиспусканием, называется энергией излучения, а ее мощность — потоком излучения. Часть потока излучения, вызывающая световое ощущение, называется световым потоком.

Световые волны разной длины вызывают у человека различные цветовые ощущения. Зрачок человеческого глаза фокусирует лучи на чувствительных рецепторах сетчатки. Зрительные центры мозга синтезируют образ из множества изображений, полученных обоими глазами, рассматривающими объект в определенной последовательности. Воздействие на глаз видимого излучения вызывает ощущение разных цветов от фиолетового до красного, причем восприимчивость глаза к цветам видимого спектра различна. При одинаковой мощности светового излучения глаз наиболее чувствителен к желтовато-зеленому цвету. В сторону красного и фиолетового цветов чувствительность глаза понижается и доходит до нуля на границах видимой части спектра.

Свет, падающий на предметы, дает достаточную информацию о форме и размерах наблюдаемых объектов. Необходимо выбрать такое освещение, чтобы получить исчерпывающую информацию о них.

1. Нормирование и устройство освещения

1.1. Общие принципы нормирования освещения

Осветительные установки производственного и бытового назначения должны обеспечивать требуемую видимость (различимость) предметов. Общие требования к осветительным установкам можно разделить на светотехнические, экономические и требования безопасности. Экономические требования и требования безопасности для осветительных установок в основном такие же, как и для других электроустановок.

Светотехнические требования заключаются в следующем: достаточная яркость, или освещенность освещаемой поверхности, благоприятная равномерность освещения, постоянство освещенности во времени, необходимое ограничение слепящего действия, отсутствие резких и глубоких теней и благоприятное направление светового потока.

Видимость объекта зависит от контраста его с фоном, уровня яркости фона и углового размера объекта. Размеры рассматриваемого объекта и контраст его с фоном определяются характером зрительной работы, поэтому уровень видимости объекта целиком зависит от уровня яркости фона, создаваемого осветительной установкой. При измерении и расчете яркости на практике возникают трудности. В связи с этим действующие в России и за границей правила нормируют освещенность, а не яркость. При этом регламентируется коэффициент отражения фона. Строго говоря, такое нормирование справедливо лишь для диффузно отражающего фона и совершенно неприемлемо для фона с направленным (зеркальным) отражением. Нормы освещенности имеют своей целью обеспечение требуемого уровня видимости при приемлемом расходе электроэнергии, материалов и оборудования.

Большинство зарубежных норм освещения имеет рекомендательный характер. В них нормируется средняя освещенность. Отечественные нормы регламентируют минимальную освещенность на рабочем месте. Ведомственные и отраслевые нормы разработаны на основе общих норм. Они содержат указания по освещению помещений и рабочих мест, характерных для данной отрасли или ведомства.

1.2. Виды освещения

Освещение разделяется по видам на рабочее, предназначенное для создания нормальных условий работы, и аварийное, которое может иметь одно из двух назначений: для продолжения работы при погасании рабочего освещения; для эвакуации людей из производственных помещений.

Устройство рабочего освещения обязательно во всех случаях независимо от наличия аварийного освещения.

Аварийное освещение для продолжения работы необходимо в помещениях и на открытых пространствах, если прекращение нормальной работы из-за отсутствия рабочего освещения может вызвать:

· взрыв, пожар, отравление людей;

· длительное нарушение технологического процесса;

· нарушение работы жизненных центров предприятий и городов, обслуживающих связь, электрои водоснабжение и т.п.;

· опасность травматизма в местах массового скопления людей; нарушение нормальной работы операционных, кабинетов неотложной помощи и приемных покоев лечебных учреждений.

Это освещение должно создавать на поверхностях, требующих обслуживания, освещенность 5% нормированной для одного общего освещения, причем при отсутствии особых обоснований — в пределах от 2 до 30 лк в зданиях и от 1 до 5 лк вне их.

Аварийное освещение для эвакуации людей (в зданиях или вне их) необходимо:

· в местах, опасных для прохода людей;

· по путям эвакуации людей из производственных и общественных помещений, где пребывает более 50 человек;

· на лестницах жилых домов высотой 6 этажей и более;

· во всех производственных помещениях с числом работающих более 50 и остальных помещениях с числом пребывающих более 100 человек;

· в производственных помещениях с постоянно работающими людьми, выход которых в темноте опасен из-за продолжения работы оборудования.

Это освещение должно создавать в проходах освещенность 0,5 лк в зданиях и 0,2 лк вне их.

Для аварийного освещения могут применяться только лампы накаливания или люминесцентные; допускается присоединение к группам аварийного освещения ламп ДРЛ или ДРИ для увеличения освещенности сверх нормативной для аварийного режима.

Светильники аварийного освещения преимущественно выделяются из числа светильников рабочего освещения: в помещениях, где работают в 1—2 смены, при мощности ламп рабочего освещения 200 Вт и более предпочтительна установка дополнительных светильников.

Если светильники аварийного освещения не отличаются от остальных типом или размером, то они должны быть отмечены специальными знаками.

Выходы из производственных помещений без естественного света площадью 150 м2 и более и из непроизводственных помещений с пребыванием в них более

100 человек должны отмечаться световыми указателями, присоединенными к сети аварийного освещения.

Устройство аварийного освещения зрелищных предприятий регламентируется отдельными правилами.

1.3. Система освещения

Освещение может быть общим равномерным, общим локализованным (выполненным с учетом расположения рабочих мест) или комбинированным, состоящим из общего освещения помещения и местного освещения рабочих поверхностей. Устройство в помещениях только местного освещения запрещено.

Временное местное освещение, осуществляемое преимущественно ручными светильниками, называется переносным.

Нормы (здесь и в дальнейшем имеется ввиду СНиП II-А.9-71) рекомендуют комбинированное освещение для помещений с работами разрядов I — IV, Va и Vб, но при невозможности или нецелесообразности устройства такового освещения допускается система одного общего освещения, имеющая некоторые гигиенические и эстетические преимущества.

Cистема комбинированного освещения применяется там, где наличествует:

· высокая точность выполняемых работ;

· специфические требования к качеству освещения (например, к направлению света);

· ограниченная площадь рабочих поверхностей;

· большая площадь помещения, приходящаяся на одно рабочее место;

· возможность перестановки рабочих мест.

В противном случае применяется одно общее освещение.

Общее освещение производственных помещений при возможности предпочтительно устраивать локализованным, чему благоприятствуют большие размеры освещаемых поверхностей или размещение их сосредоточенными группами или рядами.

В непроизводственных помещениях устраивается общее освещение, как правило, равномерное (исключения возможны, в частности, при размещении столов фиксированными рядами, в выставочных помещениях и т.п.).

Дополнительное местное освещение, требуемое нормами для некоторых помещений, при необходимости устраивается на единичных рабочих местах, и это требование не надо понимать как требование устройства комбинированного освещения.

Штепсельные розетки для подключения переносного освещения необходимы во всех помещениях, имеющих механизмы или производственные емкости, и должны обеспечивать пользование ручными светильниками при ограниченной длине провода. В некоторых помещениях непроизводственных зданий (например в коридорах) они используются также для включения пылесосов и электрополотеров.

1.4. Выбор освещенности

Быстрота и четкость различения предметов (объекта) на том или ином фоне зависит от разности яркости объекта (Во) и фона (Вф). Минимальную разность яркости, воспринимаемую глазом, называют пороговой разностью яркости (DВ). Значение DВ зависит от уровня яркости фона. Поэтому порог видимости объекта принято оценивать отношением пороговой разности яркости к яркости фона, которое называют пороговым контрастом:

Его значение уменьшается по мере увеличения яркости фона. При больших размерах рассматриваемого объекта и значениях яркости фона больше 100 нт (1 нт = 1 кд/м2) пороговый контраст практически постоянен и равен своему минимальному значению.

Читайте также  Лучшие производители мясорубок электрических

Значение порогового контраста зависит и от углового размера объекта, под которым понимают отношение абсолютного размера объекта к расстоянию его до глаза наблюдателя. С увеличением углового размера значение порогового контраста уменьшается. Значение порогового контраста зависит также от времени, в течение которого глаз фиксирует наблюдаемый объект. Чем меньше время наблюдения, тем больше значение порогового контраста. Критерием оценки уровня видимости является различие между пороговым контрастом (для данного значения яркости фона) и фактическим контрастом объекта с фоном, который устанавливается при заданных условиях. Контраст объекта с фоном равен отношению фактической разности яркостей объекта и фона к яркости фона:

Чем больше контраст объекта с фоном по сравнению с пороговым контрастом, тем лучше виден объект.

Нормы устанавливают наименьшую освещенность; при этом имеется в виду, что они устанавливаются для «наихудших» точек освещаемой поверхности перед очередной очисткой светильников. Произвольное превышение норм недопустимо. При наличии для данного объекта утвержденных отраслевых норм освещенности надлежит пользоваться последними.

Нормы СНиП основаны на шкале освещенности: 0,2 — 0,3 — 0,5 — 1 — 2 — 3 — 5 — 10 — 20 — 30 — 50 — 75 — 100 — 150 — 200 — 300 — 400 — 500 — 600 — 750 — 1000 — 1250 — 1500 — 2000 — 2500 — 3000 — 4000 — 5000 — 6000 — 7500 лк.

Основные нормы для производственных помещений приведены в табл. 1.4.1, для вспомогательных помещений производственных зданий — в табл. 1.4.2.

Фон считается светлым при r > 0,4, средним — при r от 0,2 до 0,4, темным — при r –3

Типы ламп для домашнего освещения — какие лучше и в чем разница

Какие лампы лучше для домашнего освещения? Светодиодные, люминесцентные, галогенные или лампы накаливания? В чем преимущества одних и каковы недостатки других? Насколько экономически выгодно использовать лампы того или иного типа? Давайте попробуем разобраться.

Лампы накаливания

Наиболее распространенным типом ламп в домах по прежнему остаются лампы накаливания. Они по сей день выпускаются на различные мощности, бывают самых разных размеров и форм, подходят для установки практически в любой осветительный прибор, будь то светильник, ночник или люстра.

Лампа накаливания — простейший электрический источник света. Она состоит из герметичной прозрачной вакуумированной колбы, металлического цоколя, а внутри колбы установлена спираль — вольфрамовая нить накала.

В процессе работы лампы, по ее вольфрамовой нити протекает электрический ток, как раз и вызывающий нагрев нити накала до бела. То есть свет в такой лампочке получается за счет раскаленной током вольфрамовой нити, которая и испускает видимый свет. При этом на свет приходится лишь 20% всей подводимой к лампочке энергии, остальные 80% приходятся на нагрев. Можно в принципе сказать, что лампа накаливания — это нагревательный прибор, который в процессе работы неплохо светится.

Конечно, лампы накаливания стремительно уходят с рынка, их производство не так интенсивно как раньше, но стоимость ламп накаливания — самая низкая, по сравнению с лампами других типов.

Другие типы ламп более экономичны при эксплуатации чем лампы накаливания, некоторые экономичнее до 10 раз, и даже надежнее в разы, но стоимость ламп накаливания очень низка по сравнению с другими типами. Поэтому те люди, которые не задумываются о долгосрочной окупаемости, продолжают приобретать старые добрые лампы накаливания за копейки, хотя на самом деле несут убытки, переплачивая за электроэнергию, расходуемую на освещение на протяжении многих месяцев.

Галогенные лампы

Усовершенствованный тип лампы накаливания — галогенная лампа. Здесь источником света так же служит раскаленная током вольфрамовая нить, однако помещенная в колбу с парами галогенов. Светоотдача повышается благодаря галогенам, и эффективность немного возрастает в связи с этим.

Увеличивается и срок службы лампы — если обычная лампочка служит примерно 1000 часов, то галогенная — в 2-3 раза дольше. Галогенные лампы меньше по размером при той же мощности но при большей светоотдаче, чем у обычных лампочек с нитью накала. Поэтому галогенные лампы широко используются во встраиваемых домашних светильниках небольшого размера и в автомобильной оптике (смотрите — Виды галогенных ламп и их особенности).

Люминесцентные лампы

Энергосберегающие люминесцентные лампы — следующая ступень на пути эволюции осветительных приборов. Именно компактные люминесцентные лампы (КЛЛ) называют сегодня «энергосберегайками». Их потребление значительно ниже чем у ламп накаливания и галогенных ламп с аналогичной величиной светового потока.

Начиная с 2010-2011 годов, началось активное внедрение люминесцентных ламп в системы домашнего освещения. И если раньше люминесцентные лампы в форме трубок эстетически подходили для производственных помещений и офисов, оснащенных специальными светильниками под такие трубки, то люминесцентные лампы под стандартный цоколь (как у домашней лампы накаливания) стали подходить и для жилых помещений — выкрутил лампу накаливания, поставил в этот же патрон энергосберегающую люминесцентную лампу, и никаких трудностей.

Основа функционирования люминесцентной лампы — электрический разряд в парах ртути. Ультрафиолетовое излучение, которое при этом возникает, преобразуется в видимый свет благодаря люминофору, нанесенному на внутренние стенки колбы. В качестве люминофора применяют специальные составы типа галофосфата кальция в составе смеси со вспомогательными компонентами.

Светоотдача люминесцентных ламп приблизительно в 5 раз выше чем у ламп накаливания, а срок службы качественной люминесцентной лампы измерим тысячами часов. Тем не менее даже люминесцентные лампы не являются на сегодняшний день самыми эффективными источниками света для жилища, не говоря уже о проблеме утилизации неисправных ламп с парами ртути внутри.

Светодиодные лампы

Венец эволюции источников света на сегодняшний день — светодиодные лампы, самые энергоэффективные. Далее мы наглядно сравним характеристики ламп различных типов, и это станет более очевидным. В качестве источников света здесь используются светодиоды, поэтому конструкция светодиодной лампы несколько сложнее чем у лампы накаливания, да и стоимость ее поэтому сильно выше.

Тем не менее светодиодные лампы быстро окупаются во время эксплуатации, причем намного раньше, чем истечет срок их службы, который составляет десятки тысяч часов. При этом светодиодные лампы в высшей степени безопасны. У них нет стеклянной колбы, которая может лопнуть, причинив вред здоровью человека, например порезав его, как и нет паров ртути и никаких других вредных компонентов, то есть экологическая безопасность тоже обеспечена. Проблем с утилизацией, если что, не возникнет вообще.

Сравнение параметров ламп различных типов

Мощность

Из приведенной таблицы видно, что при одном и том же отдаваемом световом потоке, лампы разных типов потребляют разную электрическую мощность, и мощность эта различается в разы. Особенно обратите внимание на то, что светодиодная лампа по сравнению с лампой накаливания потребляет почти в 8 раз меньше электроэнергии, а дает при этом столько же света. Представьте себе, как это отразится на счетах за электроэнергию. Что касается компактной люминесцентной лампы, то она в 1,5 раза уступает светодиодной.

КПД

А нужен ли нам нагрев от лампочки? Конечно нет, ведь для обогрева жилища есть система отопления. Получается, что чем сильнее нагревается лампа — тем больше энергии расходуется не целевым образом, ведь лампа нужна нам для освещения, а не для обогрева. Между тем лампа накаливания 80% потребляемой мощности переводит в тепло. Галогенная греет на 65%. Люминесцентная на 15%. Светодиодная всего на 2%.

Прочность корпуса

Что касается прочности, то лампы накаливания и галогенные лампы имеют колбы из хрупкого тонкого стекла, и стоит такую лампу уронить, как тут же придется заметать мелкие осколки. Люминесцентные лампы не менее хрупки. В них к тому же находятся пары ртути, токсичные пары, которые выйдут наружу если колбу случайно разбить, и потребуется проветривание помещения и санитарная обработка.

Светодиодные лампы находятся в выигрышной позиции, они не боятся ударов, колба, как правило, из поликарбоната, вредных газов здесь нет. Если светодиодную лампу случайно уронить, то ничего ей скорее всего не будет, разве что не стоит ронять ее с большой высоты, дабы не повредить внутренности.

Срок службы

По сроку службы светодиодные лампы однозначно превосходят любые другие: в среднем светодиоды прослужат в 40 раз дольше лампы накаливания, их можно считать в этом плане вечными. Некоторые производители прямо пишут на упаковке, что лампа способна гарантированно проработать 30 или 40 лет. Люминесцентные лампы немного уступают, их производители уверенны что лампа прослужит 10 лет. Что касается лампы накаливания, то средний срок ее для условий нынешних электрических сетей — 1 год.

Простота замены

Чтобы заменить лампочку, достаточно ее выкрутить из патрона и вкрутить новую. Но галогенные лампы нельзя вкручивать как попало. Прежде всего необходимо понимать, что галогенная лампа сильно разогревается в процессе работы, например 40 ваттная лампа разогревается до 250 °C. Нет, мы не говорим сейчас о том, что необходимо дождаться чтобы лампа остыла, прежде чем ее выкручивать, здесь важно другое.

Когда устанавливаете новую галогенную лампу, руки должны быть исключительно чистыми, и лучше вообще пользоваться салфеткой, ведь любое жирное пятно на колбе обязательно сгорит и возникнет горелый след, свет будут испорчен. Еще такой след приведет к локальному перегреву колбы, и она может треснуть. Светодиодные и люминесцентные лампы не греются так сильно, поэтому их можно выкручивать и вкручивать даже голыми руками.

Аспекты безопасности

Говоря о безопасности, рассмотрим пару аспектов. Во-первых качество света. Качество света лучше всего у ламп накаливания, галогенных ламп и светодиодных ламп. Люминесцентные же лампы обладают вредным мерцанием, раздражающим нервную систему, к тому же цветопередача у таких ламп, как правило, искажена. Во-вторых, содержание паров ртути отнюдь не в пользу люминесцентных ламп. То есть по безопасности выигрывают все кроме люминесцентных.

Что в итоге

Итог однозначен. С точки зрения экономичности и безопасности на первом месте светодиодные лампы, затем идут лампы накаливания (безопасны, но прожорливы), и наконец люминесцентные лампы (мерцают, плохо передают цвета, содержат ртуть).

Рассмотрим финансовую сторону

Допустим в квартире установлено 15 ламп накаливания по 75 ватт, которые вы хотите заменить на светодиодные. Пусть в день лампы горят примерно по 4 часа. Значит в месяц на освещение приходится: 15*75*4*30 = 135 кВт-часов. Допустим, стоимость электроэнергии в вашем регионе 5 рублей за 1 кВт-час. Значит в месяц только за свет набегает 675 рублей.

Если перейти на светодиодные лампы мощностью в 7,5 раз меньшей (как отмечалось выше), то счет составит всего 90 рублей. Пусть замена ламп обойдется вам в 3450 рублей, тогда при разнице в счетах в 585 рублей, лампы окупятся за пол года! И это с предполагаемой ценой светодиодной лампы в 230 рублей. Выгода налицо. Если теперь учесть, что светодиодные лампы прослужат 30 лет, то сами понимаете, о какой колоссальной экономии идет речь.

Три главных плюса светодиодных ламп

Светодиодные лампы вечные по сравнению с лампами накаливания, которые быстро перегорают

Светодиодные лампы быстро окупаются несмотря на высокую стоимость.

Светодиодные лампы экологически безопасны и их непросто разбить.

Лучшие для домашнего освещения — светодиодные лампы

В заключении можно однозначно сказать, что для домашнего освещения лучше всего со всех точек зрения подходят светодиодные лампы. Даже если на первый взгляд они кажутся дорогими, прикиньте окупаемость. Чем больше осветительных приборов в вашем доме — тем быстрее окупятся новые лампочки.

Если же оставить все как есть, то получится, что счета за электроэнергию, расходуемую на неэффективное освещение, съедят в общей сложности гораздо больше денег, чем потребуется всего один раз потратить на закупку новых эффективных лампочек.