Какой электрический заряд называется элементарным?

Элементарный заряд и частица электрон

Электрический заряд тела можно делить на части до тех пор, пока не получим самый маленький – элементарный заряд. Он равен заряду частицы, названной электроном.

Электрический заряд можно делить

Если в природе существуют заряженные частицы, значит, заряд, полученный телом при электризации, состоит из суммы зарядов этих частиц.

Обнаружить простейший и самый маленький заряд в природе, можно с помощью деления общего заряда тела на части.

Метод половинного деления

Этот метод заключается в делении какой-либо величины на две равные части. После этого, выбирают одну из частей и опять делят на две равные части.

Каждый раз выбирают половину и делят ее пополам, до тех пор, пока не получат самую маленькую часть, заряда которую разделить не получится.

Этот метод можно продемонстрировать на опыте.

Демонстрация деления заряда с помощью электрометров

Для проведения эксперимента потребуется два электрометра. Зарядим один из электрометров, а второй оставим незаряженным (рис. 1).

После соединим электрометры металлическим предметом – линейкой, проволокой и т. п. Мы увидим, что первоначальный заряд распределится между двумя электрометрами поровну (рис. 2).

Избыточный заряд между телами распределяется поровну.

Теперь уберем заряд одного из электрометров. А половинный заряд, оставшийся на втором приборе, опять разделим пополам, соединив измерительные приборы – заряженный и незаряженный, металлическим предметом. Этот остаточный заряд распределится между приборами поровну.

Проделав такой опыт некоторое количество раз, получим на одном из электрометров малый остаточный заряд, который разделить на части не получится. Такой заряд называют элементарным.

Опыты Иоффе и Милликена

На самом деле, чувствительности школьного электрометра не хватит, чтобы определить элементарный заряд. Физики определили величину элементарного заряда несколько другим способом.

Опыты по определению элементарного заряда проводили ученые Абрам Иоффе (СССР) и Роберт Милликен.

Они электризовали маленькие крупинки цинка и измеряли их заряд. От опыта к опыту заряд крупинок отличался в целое число раз.

Это натолкнуло на мысль, что в природе существует частица, обладающая таким самым маленьким — элементарным зарядом, который не делится на части.

Заряд и масса электрона

Элементарный заряд – это очень малый заряд. Таким зарядом обладает элементарная частица — электрон. Равный ему заряд, но имеющий противоположный знак, имеет элементарная частица протон. Заряд электрона отрицательный, а заряд протона – положительный.

[ large boxed =1<,>6 cdot 10^ <-19>left( text <Кл>right) > ]

Заряд – это одно из главных свойств электрона. Отделить от электрона его заряд не получится.

[ large boxed =9<,>1 cdot 10^ <-31>left( text <кг>right) > ]

Это очень маленькая масса, она почти в 2000 раз меньше массы самого легкого и маленького атома – атома водорода.

Единица измерения заряда

Электрический заряд измеряют в Кулонах в честь французского физика Шарля Огюстена Кулона. Он изучал электричество и механику, жил с 1736 по 1806 год. В те времена, когда Кулон проводил свои опыты, связанные с электричеством, еще не существовало единиц для измерения заряда.

Заряд в системе СИ

Примечание: Как правило, для измерения какой-либо физической величины можно выбрать любую удобную единицу. Именно так ранее и поступали. Поэтому, например, для измерения длин применялись такие единицы, как аршин, локоть, сажень и т. п.

Со временем в различных странах накопилось большое количество различных единиц измерений для одних и тех же величин. При переводе одних единиц в другие возникали разногласия и путаница. Чтобы исключить разногласия, ввели единую международную систему единиц, сокращенно СИ. В современной физике эта система измерения величин получила широкое применение.

Как единицу для измерения заряда логично было бы выбрать заряд электрона. Но заряд электрона – это очень малая величина. И для зарядов, с которыми мы сталкиваемся при решении большинства технических задач, такой малый заряд в качестве единицы измерения выбирать неудобно.

В системе СИ нет эталона для единицы измерения заряда. И заряд выражается через другие величины, для которых эталон есть.

Основной единицей для измерения электрических величин в СИ служит Ампер. Это единица силы тока (ссылка). Численно эталон 1-го Ампера определяют по магнитному взаимодействию двух токов.

Единица заряда – 1 Кулон, связана с одним Ампером.

[large boxed < 1 text<Кл>= 1 A cdot 1 c > ]

Если ток в проводнике равен 1 Амперу, то за 1 секунду через его поперечное сечение проходит заряд, равный 1 Кулону.

Кратность любого заряда элементарному заряду

Заряд, который мы сообщаем телу, всегда кратен элементарному заряду:

(q left( text<Кл>right) ) – заряд тела;

( e left( text<Кл>right) ) – элементарный заряд;

( N left( text<шт>right) ) – количество элементарных зарядов, это целое число;

Заряд можно распределить по телу, для описания распределенных зарядов используют термин — плотность заряда.

Любой заряд в пространстве вокруг себя создает электрическое поле.

Один кулон — много ли это

Заряд в 1 Кулон – это очень большой заряд. Если шар, диаметром в 110 метров, расположить в сухом воздухе достаточно далеко от других тел (рис. 3), тогда этот шар сможет содержать избыточный заряд в 1 Кулон (Кл).

Однако, не следует думать, что такие большие заряды не используются. К примеру, через провод работающего бытового электрического чайника мощностью 1000 Ватт каждую секунду проходит заряд в 4,55 Кл.

Какой электрический заряд называется элементарным?

ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ
ЭЛЕКТРОСТАТИКА. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ

§1 Атомистичность заряда. Элементарный заряд.
Закон сохранений заряда

Под зарядами понимают физическое свойство элементарной зараженной частицы оказывать силовое воздействие на другую заряженную частицу, Несмотря на огромное разнообразие веществ в природе существуют только два типа электрических зарядов : положительные, которые возникают, например, на стекле при трении его кожей, и отрицательные — на эбоните, потертом о мех.
Одноименные заряда отталкиваются, разноименные — притягиваются.
Электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда: q = n е, где n -положительное целое, е — заряд электрона е=-1,6·10-19 Кл.
Электрон — носитель элементарного отрицатель­ного заряда. Протон — ядро атома водорода — носитель элемен­тарного положительного заряда, В состав атома водорода входит один электрон и один протон. Атом водорода, как и атомы всех других веществ нейтрален, т.е. суммарный положительный заряд атома равен суммарному отрицатель­ному заряду Zр = Zе. Атомистичность заряда заключается в том, что элементарные отрицательные и положительные заряды входят в состав атома и в изолированном атоме их всегда равное число.
Все тела в природе способны электризоваться, т.е. приобретать (отдавать) электрический заряд. Электризация тел может осуществляться различными способами; соприкосновением (трением), электростатической индукцией с при помещении тела во внешнее электрическое поле ) и др. Всякий процесс электризации сводится к разделению зарядов, при котором на одном из тел ( или частей тела) появляется избыток положительных зарядов, а на другом ( или другой части тела) — избыток отрицательных зарядов. Общее количество зарядов обоих знаков, содержащихся в телах не изменяется, заряды только перераспределяются между телами.
Электрически замкнутой называется система, не обменивающаяся зарядами с внешними телами.
ЗАКОН СОХРАНЕНИЯ ЗАРЯДА:
Алгебраическая сумма электрических зарядов любой замкнутой системы остается неизменной, какие бы процесса не происходили бы внутри этой системы


По способности пропускать электрический ток (т.е. переносить заряд) все вещества делятся на проводники, полупроводники и диэлектрики.
ПРОВОДНИКИ тела, в которых электрический заряд может перемещаться по всему объему проводника. Сопротивление проводников мало, а проводимость велика.
Проводники делятся на две группы:
проводники I рода – металлы — носителями заряда являются электроны. Сообщение дополнительного электрического заряда не приводит к химическим изменениям вещества.
проводники II рода — растворы кислот, солей и их расплавы — носители заряда — электроны и ионы; перенесение в них зарядов приводит к химическим изменениям (электролиз).
ДИЭЛЕКТРИКИ (изоляторы) вещества не проводящие электриче­ский ток (стекло, воздух, пластмассы и др.). Нет свободных зарядов как в проводникак, все заряда связана в молекулах диэлектрика. Сопротивление велико, проводимость мала.
ПОЛУПРОВОДНИКИ — при определенных условиях ( большие температуры и электрические поля) способны проводить электрический ток (германий, кремний, арсенид галия).
Единица измерения электрического заряда — Кулон — электри­ческий заряд, проходящий через поперечное сечение проводника при силе тока 1 ампер за время 1 с.



Читайте также  Как выбрать электрический полотенцесушитель для ванной?

§2 Закон Кулона

Точечными зарядами называются заряженные тела, размерами которых можно пренебречь по сравнению с расстоянием между ними.
ЗАКОН КУЛОНА:
Два неподвижных точечных заряда взаимодействуй с силой F прямо пропорциональной величине этих зарядов и обратно пропорциональной квадрату расстояния между ними.

Сила Кулона направлена по прямой, соединяющей взаимодействующие зарядs, т.е. является центральной. F 0 для одноименных зарядов (заряды отталкиваются).
Закон Кулона в векторной форме:

где — сила, действующая на 1-й заряд со стороны 2-го,
— радиус-вектор, соединяющий заряды 1 и 2.
ε0 — электрическая постоянная; ε0 = 8,85·10-12 Ф/м:
Ф — фарад — единица измерения емкости;
ε — диэлектрическая проницаемость среда, показывает во сколько раз сила взаимодействия между двумя точечными зарядами в данной среде меньше силы взаимодействия в вакууме, если расстояние между зарядами не изменяется

ε показнвает ослабление силы Кулона (и электростатического поля) в среде по сравнения с вакуумом. [ε]=1.
По третьему закону Ньютона

Электрический заряд. Закон Кулона

Многие из окружающих нас физических явлений, происходящих в природе, не находят объяснения в законах механики, термодинамики и молекулярно-кинетической теории. Такие явления основываются на влиянии сил, действующих между телами на расстоянии и независимых от масс взаимодействующих тел, что сразу отрицает их возможную гравитационную природу. Данные силы называются электромагнитными.

Еще древние греки имели некоторое представление об электромагнитных силах. Однако только в конце XVIII века началось систематическое, количественное изучение физических явлений, связанных с электромагнитным взаимодействием тел.

Благодаря кропотливому труду большого количества ученых в XIX веке было завершено создание абсолютно новой стройной науки, занимающейся изучением магнитных и электрических явлений. Так один из важнейших разделов физики, получил название электродинамики.

Создаваемые электрическими зарядами и токами электрические и магнитные поля стали ее основными объектами изучения.

Электрическое поле

Понятие заряда в электродинамике играет ту же роль, что и гравитационная масса в механике Ньютона. Оно входит в фундамент раздела и является для него первичным.

Электрический заряд представляет собой физическую величину, которая характеризует свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Буквами q или Q в электродинамике обычно обозначают электрический заряд.

В комплексе все известные экспериментально доказанные факты дают нам возможность сделать следующие выводы:

Существует два рода электрических зарядов. Это, условно названные, положительные и отрицательные заряды.

Заряды могут переходить (к примеру, при непосредственном контакте) между телами. Электрический заряд, в отличие от массы тела, не является его неотъемлемой характеристикой. Одно конкретное тело в различных условиях может принимать разное значение заряда.

Одноименные заряды отталкиваются, разноименные – притягиваются. В данном факте проявляется очередное принципиальное различие электромагнитных и гравитационных сил. Гравитационные силы всегда представляют собой силы притяжения.

Закон сохранения электрического заряда является одним из фундаментальных законов природы.

В изолированной системе алгебраическая сумма зарядов всех тел неизменна:

q 1 + q 2 + q 3 + . . . + q n = c o n s t.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С точки зрения современной науки, носителями зарядов являются элементарные частицы. Любой обычный объект состоит из атомов. В их состав входят несущие положительный заряд протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны являются составной частью атомных ядер, электроны же образуют электронную оболочку атомов. По модулю электрические заряды протона и электрона эквивалентны и равняются значению элементарного заряда e .

В нейтральном атоме количество электронов в оболочке и протонов в ядре одинаково. Число любых из списка приведенных частиц называется атомным номером.

Подобный атом имеет возможность как потерять, так и приобрести один или несколько электронов. Когда такое происходит, нейтральный атом становится положительно или отрицательно заряженным ионом.

Заряд может переходить от одного тела к другому лишь порциями, в которых содержится целое число элементарных зарядов. Выходит, что электрический заряд тела является дискретной величиной:

q = ± n e ( n = 0 , 1 , 2 , . . . ).

Физические величины, имеющие возможность принимать исключительно дискретный ряд значений, называются квантованными.

Элементарный заряд e представляет собой квант, то есть наименьшую возможную порцию электрического заряда.

Несколько выбивается из всего вышесказанного факт существования в современной физике элементарных частиц так называемых кварков – частиц с дробным зарядом ± 1 3 e и ± 2 3 e .

Однако наблюдать кварки в свободном состоянии ученым так и не довелось.

Для обнаружения и измерения электрических зарядов в лабораторных условиях обычно используют электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1 . 1 . 1 ).

Стержень со стрелкой изолирован от металлического корпуса. Соприкасаясь со стержнем электрометра, заряженное тело провоцирует распределение по стержню и стрелке электрических зарядов одного знака. Воздействие сил электрического отталкивания становится причиной отклонения стрелки на некоторый угол, по которому можно определить заряд, переданный стержню электрометра.

Рисунок 1 . 1 . 1 . Перенос заряда с заряженного тела на электрометр.

Электрометр – достаточно грубый прибор. Его чувствительность не позволяет исследовать силы взаимодействия зарядов. В 1785 году был впервые открыт закон взаимодействия неподвижных зарядов. Первооткрывателем стал французский физик Ш. Кулон. В своих опытах он измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора для измерения электрического заряда – крутильных весов (рис. 1 . 1 . 2 ), обладающих крайне высокой чувствительностью. Коромысло весов поворачивалось на 1 ° под действием силы приблизительной 10 – 9 Н .

Идея измерений основывалась на догадке физика о том, что при контакте заряженного шарика с таким же незаряженным, имеющийся заряд первого разделится на равные части между телами. Так был получен способ изменять заряд шарика в два или более раз.

Кулон в своих опытах измерял взаимодействие между шариками, размеры которых значительно уступали разделяющему их расстоянию, из-за чего ими можно было пренебречь. Подобные заряженные тела принято называть точечными зарядами.

Рисунок 1 . 1 . 2 . Прибор Кулона.

Рисунок 1 . 1 . 3 . Силы взаимодействия одноименных и разноименных зарядов.

Основываясь на множестве опытов, Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними: F = k q 1 · q 2 r 2 .

Силы взаимодействия являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1 . 1 . 3 ), а также подчиняются третьему закону Ньютона:
F 1 → = — F 2 → .

Кулоновским или же электростатическим взаимодействием называют воздействие друг на друга неподвижных электрических зарядов.

Раздел электродинамики, посвященный изучению кулоновского взаимодействия, называется электростатикой.

Закон Кулона может быть применим по отношению к точечным заряженным телам. На практике, он в полной мере выполняется в том случае, если размерами заряженных тел можно пренебречь из-за значительно превышающего их расстояния между объектами взаимодействия.

Коэффициент пропорциональности k в законе Кулона зависим от выбора системы единиц.

В Международной системе С И единицу измерения электрического заряда представляет кулон ( К л ) .

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А . Единица силы тока (ампер) в С И является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе С И в большинстве случаев записывается в виде следующего выражения:

В котором ε 0 = 8 , 85 · 10 — 12 К л 2 Н · м 2 является электрической постоянной.

В системе С И элементарный заряд e равняется:

e = 1 , 602177 · 10 — 19 К л ≈ 1 , 6 · 10 — 19 К л .

Опираясь на опыт, можно сказать, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Принцип суперпозиции

На рисунке 1 . 1 . 4 на примере электростатического взаимодействия трёх заряженных тел поясняется принцип суперпозиции.

Рисунок 1 . 1 . 4 . Принцип суперпозиции электростатических сил F → = F 21 → + F 31 → ; F 2 → = F 12 → + F 32 → ; F 3 → = F 13 → + F 23 → .

Рисунок 1 . 1 . 5 . Модель взаимодействия точечных зарядов.

Несмотря на то, что принцип суперпозиции является фундаментальным законом природы, его использование требует некоторой осторожности, когда он применяется по отношению к взаимодействию заряженных тел конечных размеров. Примером таковых могут послужить два проводящих заряженных шара 1 и 2 . Если к подобной системе, состоящей из двух обладающих зарядом шаров поднести еще один заряженный шар, то взаимодействие между 1 и 2 претерпит изменения по причине перераспределения зарядов.

Принцип суперпозиции предполагает, что силы электростатического взаимодействия между двумя любыми телами не зависят от наличия других обладающих зарядом тел, при условии, что распределение зарядов фиксировано (задано).

Элементарный электрический заряд; два вида электрических зарядов; закон сохранения электрического заряда; закон Кулона

Электростатика – это раздел физики, изучающий взаимодействие неподвижных электрических зарядов.Электрический заряд – это физическая величина, определяющая интенсивность электромагнитных взаимодействий.который обозначается q.

Заряд без частицы не существует.Единица измерения электрического заряда — кулон (Кл). 1 кулон — это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А. Наличие сил притяжения и отталкивания эл. зарядов свидетельствует о существовании зарядов противоположных знаков. (+ и -). Одноименные всегда отталкиваются, а разноименные всегда притягиваются.Электризация — это сообщение телу электри­ческого заряда. При электризации происходит перераспределение зарядов между телами, новые заряды не возникают. Закон сохранения электрического заряда.В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.при любых взаимодействиях зарядов между собой.q – заряд. В случае избытка электронов тело приобретает отрицательный заряд, в случае недостатка — поло­жительный.Основной закон электростатики был экспериментально установлен Шарлем Кулоном.В основе закона Кулона лежит закон всемирного тяготения.Закон Кулона. Сила взаимо­действия двух точечных неподвиж­ных заряженных тел в вакууме прямо пропорциональна произведению мо­дулей заряда и обратно пропор­циональна квадрату расстояния между ними.k = 9·10 9 где q1 и q2— модули зарядов, r — расстояние между ними, k — коэффициент пропор­циональности.В природе существует минимальный неделимый электрический заряд, которым обладают элементарные частицы (электрон, протон). Этот заряд называют элементарным.

Если заряды находятся не в вакууме, а в конкретной среде, то сила Кулоновского взаимодействия меньше на величину, которую называют диэлектрической проницаемостью среды.

Основные характеристики планет Земной группы, планет-гигантов.

Пояс астероидов делит Солнечную систему на две части, в которых обитают совсем разные на первый взгляд планеты. Ближе к Солнцу расположены Меркурий, Венера, Земля и Марс. Их называют планетами земной группы. Это сравнительно небольшие шары, имеющие твердую поверхность, окруженные не слишком толстой атмосферой. Планеты земной группы похожи между собой по размерам, массе и составу пород. Их поверхности сложены твёрдыми породами со средней плотностью вещества от 3,9 г/см3 у Марса до 5,5 г/см3 у Земли (у Меркурия — 5,4 г/см3, у Венеры — 5,2 г/см3). Основными их составляющими являются силикаты (соединения кремния) и железо. Состав этих планет свидетельствует, что их рост происходил в отсутствие легких газов за счет каменистых частиц и тел, содержащих различное количество железа и других металлов.

Все планеты земной группы имеют одинаковое строение:

в самом центре находиться тяжёлое и горячее ядро. В основном оно состоит из железа, с примесью никеля;над ядром расположена мантия, состоящая из силикатов;

самый верхний слой — кора, образованная из-за частичного плавления мантии. Поэтому она также состоит из силикатов, обогащенных иными элементами. Коры нет только у Меркурия — она была разрушена сильными метеоритными бомбардировками, из-за сильно разряжённой атмосферы. Земная кора сильно отличается от других планет, высоким содержанием гранита.

Во вторую группу входят:Сатурн— 120670 км;Уран— 51121 км;Юпитер— 143100 км;

Нептун— 49457 км. Тела этой группы, в первую очередь, выделяются исполинскими размерами ( поэтому их называют планетами гигантами) и отсутствием твердой поверхности. Основу в строении этих планет составляют водород, гелий и ряд других газов. Поэтому нередко эти тела называются газовыми гигантами. Благодаря исполинским размерам они имеют огромное количество спутников и кольца. В состав колец, в основном, входят небольшие камешки и частички льда. Несмотря на то, что кольца наблюдаются лишь у Сатурна, они есть и у других планет этой группы, однако не столь заметны. Еще один отличительный признак — высокая скорость вращения. Кроме этого, у гигантов наблюдаются достаточно мощные атмосферы, особенно это заметно на примере Юпитера.
В целом, планеты этой группы можно характеризовать по ряду признаков:

· сильное магнитное поле;

· имеют кольца;

· огромное число спутников;

· значительное удаление от звезды.

3. (38,4*10 -5 с)

Что такое электрический заряд и каковы его свойства?

Научное обоснование многих электрических явлений стало возможным благодаря опытам Кулона, на основании которых учёный ввёл термин «точечный электрический заряд». Исследуя природу электризации, французский физик с помощью изобретённых им крутильных весов, открыл закон взаимодействия точечных зарядов, известный нам как закон Кулона.

Впоследствии этот основополагающий закон помог учёным сформировать представление о строении атомов, объяснить природу электричества. Это способствовало созданию источников электрического тока, без которого современного уровня научно-технического прогресса не удалось бы достигнуть.

История

На существование электрических зарядов обращали внимание мыслители ещё до нашей эры. Однако они не способны были объяснить их природу и, тем более, описать взаимодействие.

Прошло много веков до того момента, когда учёные вплотную занялись изучением электрических явлений, что и привело их к открытиям в данной области. В частности Уильям Гильберт ещё в XVI веке, не понимая природы электричества, называл наэлектризованными тела, которые притягивали другие вещества.

В 1729 году, наблюдая за электризацией различных тел, Шарль Дюфе пришёл к выводу о существовании зарядов двух видов, которые называл «стеклянными» (так как они проявляли себя на стеклянной палочке) и «смоляными» (возникающими при электризации смол). Позже Бенджамином Франклином понятия «стеклянные» и «смоляные» были заменены на более общие термины: «положительные» и «отрицательные». Данными терминами мы пользуемся по сегодняшний день.

Несмотря на то, что эти исследователи понимали факт распределения зарядов, они не смогли объяснить природу явления. Вплотную приблизился к пониманию элементарных частиц как носителей зарядов учёный-физик Ш. Кулон. Придуманный им термин «точечный заряд» помог учёному понять взаимодействие элементарных частиц, что привело его к открытию закона.

На основании своего открытия, физик уже мог объяснить причину взаимодействия точечных заряженных тел (см. рис. 1).

Рис. 1. Взаимодействие наэлектризованных тел

Дискретность (неделимость) элементарных заряженных частиц доказал Роберт Милликен. Учёный подтвердил, что заряженное тело содержит целое число элементарных частиц. Он пришёл к выводу, что делимость заряда имеет предел. Носителем элементарного заряда является электрон.

На рисунке 2 изображён опыт, подтверждающий делимость заряда. Опыт показывает, что деление кратно, это наталкивает на мысль о существовании элементарных частиц.

Рис. 2. Делимость заряда

Целостная картина сложилась после обнародования предложенной Резерфордом наглядной планетарной модели атома. Модель предполагает, что атом состоит из ядра, вокруг которого вращаются электроны. Это довольно упрощённая модель, но она уже объясняла многие электрические процессы, включая электризацию тел.

Рис. 3. Современная интерпретация планетарной модели атома

Что такое электрический заряд?

Данный термин обозначает то, что заряженное тело способно создавать электрическое поле. В более широком значении, зарядом называют количество электричества – скалярную величину, являющейся источником электромагнитного поля, участвующую в процессах электромагнитных взаимодействий. Электрический заряд не может существовать без носителя.

Элементарными носителями отрицательных зарядов являются электроны. Антиподом электрона является позитрон – устойчивая античастица, равная по массе электрону, но со знаком «+». Существует ещё одна устойчивая, положительно заряженная элементарная частица – протон.

Частицы, заряжены дробными частями (кварки), могут существовать только в составе адронов, поэтому их не считают носителями.

Заряженные протоны, из которых состоит ядро атома, тесно связаны ядерными силами. Они не могут свободно вырываться с ядра атома. Поэтому в качестве свободных носителей положительного заряда принято считать ион – атом, с орбиты которого удалился электрон. Образование отрицательных ионов происходит за счёт присоединения к ним свободных электронов.

Заряженность нейтральных атомов и молекул нулевая, а число положительных и отрицательных ионов в ячейках кристаллических решёток скомпенсировано. Поэтому тела в обычных условиях электростатически нейтральны. Между нейтральными атомами взаимодействие отсутствует.

Свойства

Установлено, что неподвижный заряд q неразрывно связан с электрическим полем, представителем особого вида материи. Поле является материальным носителем взаимодействия между элементарными частицами. Это свойство поля проявляется даже в случае отсутствия вещества между взаимодействующими телами.

Электрическое поле действует с силой F на пробный заряд q′, расположенный в любой точке поля.

характеризует действие электричества и называется напряженностью поля. Линии, касательные к которым совпадают с вектором напряжённости, образуют линии напряжённости. Густота линий напряжённости определяет величину напряжённости.

Линии напряженности электростатического поля точечного заряда представляют собой лучи, выходящие из одной точки (для положительного) или входящего в точку (для отрицательного) (см. рис. 4).

Рис. 4. Линии напряжённости поля

Электростатическое взаимодействие электромагнитных полей можно наблюдать на поведении заряженных шариков. Если эбонитовую или стеклянную палочку наэлектризовать трением и приблизить её к крохотным бузиновым шарикам, то мы увидим, как в результате силовых взаимодействий частицы отталкиваются (если они одинаковых знаков), либо притягиваются (разнознаковые).

Насыщение свободными носителями зарядов различных веществ не одинаково. Больше всего свободных электронов содержится в металлах. Поскольку заряженные электроны способны перемещаться под действием электрического поля, они являются основными транспортировщиками электрического тока в металлах. При этом движения электронов не приводит к каким-либо химическим изменениям.

Перенос зарядов в расплавленных солях или в растворах кислот осуществляется ионами. Они могут быть заряжены как положительно, так и отрицательно. В отличие от металлов, перераспределение зарядов в этих жидкостях сопровождается химическими реакциями. Поэтому растворы называют проводниками второго рода, то есть такими, которые под действием постоянных токов приводят к изменению химического состава вещества.

Таким образом, вещества условно подразделяют по типу проводимости:

  • проводники первого рода (металлы);
  • проводники второго рода (соляные, щелочные и кислотные растворы);
  • полупроводники (электронно-дырочная проводимость);
  • диэлектрики (вещества не способные проводить электричество из-за отсутствия свободных носителей).

Единица измерения

Единицей измерения заряда в международной системе СИ принято 1 кулон – совокупный заряд элементарных частиц, преодолевающих сечение проводника с током в 1 А, за единицу времени (секунду). Это огромная величина. Силу взаимодействия величиной в 1 Кл на расстоянии 1 м можно сравнить с действием гравитационного притяжения Землёй тела, массой 1 млн. т (9 × 10 9 Н).

Взаимодействие зарядов

Многочисленные опыты показали, что заряженные элементарные частицы взаимодействуют между собой. Носители одноименных зарядов отталкиваются, а носители разноименных зарядов – притягиваются (см.рис. 5).

Рис. 5. Взаимодействие элементарных частиц

Силу взаимодействия точечных зарядов определяют по формуле, вытекающей из закона Кулона: F = (k*q1*q2)/r 2 , где q1 и q2 –две заряженные точки, расположенные на расстоянии r, а k – коэффициент, размерность которого зависит от выбранной системы измерений, а значение – от свойств окружающей среды. Закон Кулона – один из фундаментальных законов физики.

Рис. 6. Интерпретация закона кулона

Закон сохранения электрического заряда

Экспериментально установлено, что в замкнутой системе выполняется один из основополагающих законов физики – закон сохранения. В изолированной системе суммарный заряд не исчезает, а сохраняется во времени. Кроме того, он квантуется, то есть изменяется порциями, кратными заряду элементарной частицы.

Алгебраическая сумма зарядов – величина постоянная: q1 + q2 + … + qn = const (см. рис. 7).

Рис. 7. Сохранение статического электричества

Закон сформулирован Б.Франклином (1747 г.) и подтверждён М. Фарадеем в 1843 г.

Способы измерения

Самый простой прибор для измерения – электроскоп. Он состоит из двух лепестков из фольги, расположенных на металлическом стержне. Конструкция накрыта стеклянным колпаком.

Если наэлектризованным телом прикоснуться к стержню, то лепестки наэлектризуются. Поскольку знаки на них одинаковые, то кулонова сила оттолкнёт их в разные стороны. По величине угла отклонения можно оценить величину статического электричества поступившего на лепестки.

Более сложный прибор – электрометр (схематическое изображение на рис. 8). Прибор состоит из стержня электрометра, стрелки и шкалы. Принцип действия аналогичен электроскопу (стрелка отталкивается от стержня). Благодаря наличию шкалы отклонение стрелки электрометра показывает количественную величину переданного электричества.

Рис. 8. Схематическое изображение электрометра

Мы уже упоминали, что Кулон в своих опытах пользовался крутильными весами. Этот измерительный прибор позволил учёному открыть знаменитый закон, названный в честь его имени.